87. Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation

R.S. Molina, T.M. Tran, R.E. Campbell, G.G. Lambert, A. Salih, N.C. Shaner, T.E. Hughes, and M. Drobizhev*, “Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation”, J. Phys. Chem. Lett., 2017, 8, 2548–2554.

 

86. Illuminating Photochemistry of an Excitation Ratiometric Fluorescent Protein Calcium Biosensor

L. Tang, Y. Wang, W. Liu, Y. Zhao, R.E. Campbell, and C. Fang*, “Illuminating Photochemistry of an Excitation Ratiometric Fluorescent Protein Calcium Biosensor”, J. Phys. Chem. B, 2017, 121, 3016–3023.

 

85. Optogenetic Control with a Photocleavable Protein, PhoCl

W. Zhang (equal contribution), A.W. Lohman (equal contribution), Y. Zhuravlova, X. Lu, M.D. Wiens, H. Hoi, S. Yaganoglu, M.A. Mohr, E.N. Kitova, J.S. Klassen, P. Pantazis, R.J. Thompson, and R.E. Campbell*, “Optogenetic Control with a Photocleavable Protein, PhoCl”, Nat. Methods, 2017, 14, 391-394.

 

84. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity

Y. Shen, Y. Chen, J. Wu, N.C. Shaner, and R.E. Campbell*, “Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity”, PLoS ONE, 2017, 12, e0171257.

 

83. Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure

M. Suzuki, M. Sato, H. Koyama, Y. Hara, K. Hayashi, N. Yasue, H. Imamura, T. Fujimori, T. Nagai, R.E. Campbell, and N. Ueno*, “Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure”, Development, 2017, 144, 1307-1316.

 

82. Ratiometric and photoconvertible fluorescent protein-based voltage indicator prototypes

A.S. Abdelfattah, V. Rancic, B. Rawal, K. Ballanyi, and R.E. Campbell*, “Ratiometric and photoconvertible fluorescent protein-based voltage indicator prototypes”, ChemComm, 2016, 52, 14153–14156.

 

81. A tandem green-red heterodimeric fluorescent protein with high FRET efficiency

M.D. Wiens, Y. Shen, X. Li, M.A. Salem, N. Smisdom, W. Zhang, A. Brown, and R.E. Campbell*, “A tandem green-red heterodimeric fluorescent protein with high FRET efficiency”, ChemBioChem, 2016, 17, 2361–2367. 

 

80. The growing and glowing toolbox of fluorescent and photoactive proteins

E.A. Rodriguez*, R.E. Campbell*, J.Y. Lin*, M.Z. Lin*, A. Miyawaki*, A.E. Palmer*, X. Shu*, J. Zhang* and R.Y. Tsien*, “The growing and glowing toolbox of fluorescent and photoactive proteins”, Trends Biochem. Sci. 2017, 42, 111–129.

 

79. Roger Y. Tsien (1952 – 2016)

E.A Rodriguez*, N.C Shaner*, M.Z Lin*, and R.E Campbell*, “Roger Y. Tsien (1952 – 2016)”, Nat. Methods 2016, 13, 893.

78. Spying on Cells: Toward a Perfect Sleeper Agent

M.D. Wiens, X. Lu, and R.E. Campbell*, “Spying on Cells: Toward a Perfect Sleeper Agent”. Cell Chem. Biol. 2016, 23, 756-758.

77. A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices

A.S. Abdelfattah, S.L. Farhi, Y. Zhao, D. Brinks, P. Zou, A. Ruangkittisakul, J. Platisa, V.A. Pieribone, K. Ballanyi, A.E. Cohen, and R.E. Campbell*, “A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices”. J. Neurosci. 2016, 36, 2458-2472.

Supplementary material

76. Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging

Y. Li (equal contribution), A. Forbrich (equal contribution), J. Wu, P. Shao, R. E. Campbell* and R. Zemp*, “Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging”. Sci. Rep., 2016, 6,  22129.

75. Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma

I. Zhang, Y. Cui, A. Amiri, Y. Ding, R. E. Campbell, and D. Maysinger*, “Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma”, Eur. J. Pharm. Biopharm., 2016, 100, 66–76.

 74. Altered E. coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase

F. Hatahet, J.L. Blazyk, E. Martineau, E. Mandela, Y. Zhao, R.E. Campbell, J. Beckwith* and D. Boyd, “Altered E. coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase”. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 15184–15189.

73. Validating tyrosinase homologue melA as a photoacoustic reporter gene for imaging Escherichia coli

R.J. Paproski (equal contribution), Y. Li (equal contribution), Q. Barber, J.D. Lewis, R.E. Campbell, and R. Zemp*, “Validating tyrosinase homologue melA as a photoacoustic reporter gene for imaging Escherichia coli”. J. Biomed. Opt. 2015, 20, 106008.

72. Fluorescent proteins for neuronal imaging

Y. Zhao and R.E. Campbell*, “Fluorescent proteins for neuronal imaging”, in New techniques in systems neuroscience, Ed. A. Douglass. Springer International Publishing, Switzerland, April 2015, pages 57-96. [ISBN: 978-3-319-12912-9]

71. Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications

Y. Shen, T. Lai, and R.E. Campbell*, “Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications”, Neurophoton., 2015, 2, 031203. [Open Access]

70. Emerging fluorescent protein technologies

J.R. Enterina, L. Wu, and R.E. Campbell*, “Emerging fluorescent protein technologies”, Curr. Opin. Chem. Biol., 2015, 27, 10–17.

69. Unraveling Ultrafast Photoinduced Proton Transfer Dynamics in a Fluorescent Protein Biosensor for Ca2+ Imaging

L. Tang, W. Liu, Y. Wang, Y. Zhao, B.G. Oscar, R.E. Campbell, and C. Fang*, “Unraveling Ultrafast Photoinduced Proton Transfer Dynamics in a Fluorescent Protein Biosensor for Ca2+ Imaging”, Chem. Eur. J. 2015, 21, 6481-6490.

68. Fluorescent biosensors illuminate calcium levels within defined beta-cell endosome subpopulations

T. Albrecht (equal contribution), Y. Zhao (equal contribution), T.H. Nguyen, R.E. Campbell, and J.D. Johnson*, “Fluorescent biosensors illuminate calcium levels within defined beta-cell endosome subpopulations”, Cell Calcium, 2015, 57, 263-274. [Open access]

67. Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange

Y. Ding, J. Li, J.R. Enterina, Y. Shen, I. Zhang, P.H. Tewson, G.C.H. Mo, J. Zhang, A.M. Quinn, T.E. Hughes, D. Maysinger, S.C. Alford, Y. Zhang, and R.E. Campbell*, “Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange”, Nat. Methods, 2015, 12, 195-198.

66. A Photochromic and Thermochromic Fluorescent Protein

Y. Shen, M.D. Wiens, and R.E. Campbell*, “A Photochromic and Thermochromic Fluorescent Protein”. RSC Adv., 2014, 4, 56762-56765. [Open Access PDF]

65. pHuji, a pH sensitive red fluorescent protein for imaging of exo- and endocytosis

 Y. Shen (equal contribution), M. Rosendale (equal contribution), R.E. Campbell (*correspondance related to new FP variants), and D. Perrais*, “pHuji, a pH sensitive red fluorescent protein for imaging of exo- and endocytosis”, J. Cell Biol., 2014, 207 (3): 419-432.

 64. A long Stokes shift red fluorescent protein Ca2+ indicator for 2-photon and ratiometric imaging

J. Wu, A.S. Abdelfattah, L.S. Miraucourt, E. Kutsarova, A. Ruangkittisakul, H. Zhou, K. Ballanyi, G. Wicks, M. Drobizhev, A. Rebane, E.S. Ruthazer, and R.E. Campbell*, “A long Stokes shift red fluorescent protein Ca2+ indicator for 2-photon and ratiometric imaging”, Nat. Commun., 2014, 5, 5262. [Supplementary MaterialFunding from NSERC Discovery, CIHR MOP 123514, and a Vanier Canada Graduate and Alberta Innovates Health Solutions (AIHS) Scholarships to A.S.A]

 63. Excited State Structural Events of a Dual-Emission Fluorescent Protein Biosensor for Ca2+ Imaging Studied by Femtosecond Stimulated Raman Spectroscopy

Y. Wang, L. Tang, W. Liu, Y. Zhao, B.G. Oscar, R.E. Campbell, and C. Fang*, “Excited State Structural Events of a Dual-Emission Fluorescent Protein Biosensor for Ca2+ Imaging Studied by Femtosecond Stimulated Raman Spectroscopy”, J. Phys. Chem. B, 2015, 119, 2204-2218.

62. Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum

J. Wu, D.L. Prole, Y. Shen, Z. Lin, A. Gnanasekaran, Y. Liu, L. Chen, H. Zhou, S.R.W. Chen, Y.M. Usachev, C.W. Taylor, and R.E. Campbell*, “Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum”, Biochem. J., 2014, 464, 13–22. [Supplementary Material; Funding from NSERC Discovery, CIHR MOP 123514, and a graduate scholarship from Alberta Innovates to Y.S.]

61. Bright and fast multi-colored voltage reporters via electrochromic FRET

P. Zou (equal contribution), Y. Zhao (equal contribution), A.D. Douglass, D.R. Hochbaum, D. Brinks, C.A. Werley, D.J. Harrison, R.E. Campbell (*correspondence regarding the library screen), A.E. Cohen*, “Bright and fast multicolored voltage reporters via electrochromic FRET”, Nat. Commun., 2014, 5, 4625.  [Supplementary Material; Funding from NSERC Discovery, CIHR MOP 123514, and graduate scholarships from the University of Alberta and Alberta Innovates to Y.Z.]

60. Excited state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging

B.G. Oscar, W. Liu, Y. Zhao, L. Tang, Y Wang, R.E. Campbell, and C. Fang*, “Excited state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging”, Proc. Natl. Acad. Sci. U.S.A., 2014, 111, 10191–10196. [Supplementary Material; Funding from NSERC Discovery, CIHR MOP 123514, and graduate scholarships from the University of Alberta and Alberta Innovates to Y.Z.]

59. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins

D.R. Hochbaum (equal contribution), Y. Zhao (equal contribution), S.L. Farhi, N. Klapoetke, C.A. Werley, V. Kapoor, P. Zou, J.M. Kralj, D. Maclaurin, N. Smedemark-Margulies, J. Saulnier, G.L. Boulting, Y. Cho, M. Melkonian, G.K-S. Wong, D.J. Harrison, V.N. Murthy, B. Sabatini, E.S. Boyden (equal contribution), R.E. Campbell (equal contribution; *correspondance related to directed evolution), and A.E. Cohen*, “All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins”, Nat. Methods, 2014, 11, 825–833. [Supplementary Material;Sample requests; Funding from NSERC Discovery, CIHR MOP 123514, and graduate scholarships from the University of Alberta and Alberta Innovates to Y.Z.; Highlighted by Science Media Centre of Canada]

58. Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response

Y. ZhaoA.S. Abdelfattah, Y. Zhao, A. Ruangkittisakul, K. Ballanyi, R.E. Campbell*, D.J. Harrison*, “Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response”, Integr. Biol. (Camb), 2014, 6(7), 714-725. [Open Access PDFSupplementary materialMovie 1Movie 2; Funding from NSERC Discovery, CIHR MOP 123514, and graduate scholarships from the University of Alberta (Y.Z) and Alberta Innovates to (Y.Z. and A.S.A)]

57. Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications

H-w. Ai, M.A. Baird, Y. Shen, M.W. Davidson*, and R.E. Campbell*, “Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications”. Nat. Protocols, 2014, 9, 910-928. [Funding from University of Alberta, CFI, NSERC Discovery grant, and Alberta Ingenuity (Scholarship to Y.S. and a New Faculty Award to R.E.C.)]

56. Optimization of a Genetically Encoded Biosensor for Cyclin B1-Cyclin Dependent Kinase 1 

A.S.F. Belal, B.R. Sell, H. Hoi, M.W. Davidson, and R.E. Campbell*, “Optimization of a Genetically Encoded Biosensor for Cyclin B1-Cyclin Dependent Kinase 1”. Mol. Biosyst., 2014, 10(2), 191-195. [Open Access PDFSupplementary material; Funded by NSERC]

55. FRET with Fluorescent Proteins

H. HoiY. Ding, and R.E. Campbell*, “FRET with Fluorescent Proteins”, in FRET – Förster Resonance Energy Transfer: From Theory to Applications. Eds. Igor Medintz and Niko Hildebrandt. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, November 2013, pages 431-473. [Google book preview; Funded by NSERC Discovery and CIHR NHG 99085]

54. An engineered monomeric Zoanthus sp. yellow fluorescent protein

H. Hoi, E.S. Howe, Y. Ding, W. Zhang, M.A. Baird, B.R. Sell, J.R. Allen, M.W. Davidson, and R.E. Campbell*, “An engineered monomeric Zoanthus sp. yellow fluorescent protein”, Chem. Biol., 2013, 20, 1296-1304. [Highlighted in the same issueSupplementary Material; Funded by NSERC Discovery and Alberta Innovates Technology Futures (AITF) Scholarship to W.Z.]

53. Mutational analysis of a red fluorescent protein-based calcium ion indicator

H.J. Carlson and R.E. Campbell*, “Mutational analysis of a red fluorescent protein-based calcium ion indicator”, Sensors, 2013, 13(9), 11507-11521. [Open Access PDFSupplementary Material; Funded by NSERC Discovery, NSERC PGSM, and Alberta Ingenuity Scholarship]

pdf-iconFull Text

52. Circular permutated red fluorescent proteins and calcium ion indicators based on mCherry

H.J. Carlson and R.E. Campbell*, “Circular permutated red fluorescent proteins and calcium ion indicators based on mCherry”, Protein Eng. Des. Sel., 2013, 26(12): 763-772. [Supplementary Material; Funded by NSERC Discovery, NSERC PGSM, and Alberta Ingenuity Scholarship]

pdf-icon Full Text

51. Palmitoylation is the Switch that Assigns Calnexin to Quality Control or ER Calcium Signaling

E.M. Lynes, A. Raturi, M. Shenkman, C.O. Sandova, M.C. Yap, J. Wu, A. Janowicz, N. Myhill, M.D. Benson, R.E. Campbell, L. G. Berthiaume, G.Z. Lederkremer and T. Simmen*, “Palmitoylation is the Switch that Assigns Calnexin to Quality Control or ER Calcium Signaling“, J. Cell Sci., 2013, 126, 3893-3903. [Supplementary Material; Funded by CIHR NHG 99085]

pdf-icon Full Text

50. Improved orange and red Ca2+ indicators and photophysical considerations for optogenetic applications

J. Wu, L. Liu, T. Matsuda, Y. Zhao, A. Rebane, M. Drobizhev, Y-F. Chang, S. Araki, Y. Arai, K. March, T. E. Hughes, K. Sagou, T. Miyata, T. Nagai*, W-h. Li*, R. E. Campbell*, “Improved orange and red Ca2+ indicators and photophysical considerations for optogenetic applications”, ACS Chem. Neurosci., 2013, 4(6), 963-972. [Supplementary Material; Funded by CIHR NHG 99085, CIHR MOP 123514, NSERC Discovery, and Alberta Ingenuity Nanotechnology Scholarship to Y.Z.; Highlighted at OpenOptogenetics

pdf-icon Full Text

49. Highlightable Ca2+ indicators for live cell imaging

H. Hoi, T. Matsuda, T. Nagai, and R.E. Campbell*, “Highlightable Ca2+ indicators for live cell imaging”, J. Am. Chem. Soc., 2013, 135(1), 46-49. [Supplementary Material; Funded by NSERC Discovery; Highlighted at OpenOptogenetics]

pdf-icon Full Text

48. Optogenetic Reporters

S.C. AlfordJ. WuY. Zhao, R.E. Campbell, and T. Knöpfel*, “Optogenetic Reporters”. Biol. Cell., 2013, 105, 14-29. [Funded by CIHR NHG 99085, NSERC Discovery, NSERC CGSD3 to S.C.A., Alberta Ingenuity Ph.D. Scholarship to S.C.A., and Alberta Ingenuity Nanotechnology Scholarship to Y.Z.; Highlighted at ChemistryViews]

pdf-icon Full Text

47. mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities

A.L. McEvoy*, H. Hoi, M. Bates, E. Platonova, P.J. Cranfill, M.A. Baird, M.W. Davidson, H. Ewers, J. Liphardt, and R.E. Campbell*, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities”. PLoS ONE, 2012, 7(12): e51314. [Open Access PDFSupplementary Material; Funded by NSERC Discovery]

pdf-icon Full Text

46. Dimerization-Dependent Green and Yellow Fluorescent Proteins

S.C. Alford, Y. Ding, T. Simmen, and R.E. Campbell*, “Dimerization-Dependent Green and Yellow Fluorescent Proteins”. ACS Synth. Biol., 2012, 1(12), 569-575. [Cover artSupplementary Material;Author Feature; Funded by CIHR NHG 99085, NSERC Discovery, NSERC CGSD3 to S.C.A., and Alberta Ingenuity Ph.D. Scholarship to S.C.A]

pdf-icon Full Text

45. Portable self-contained cultures for phage and bacteria made of paper and tape

M. Funes-Huacca,  A. Wu,  E. Szepesvari,  P. Rajendran,  N. Kwan-Wong,  A. Razgulin,  Y. Shen,  J. Kagira,  R.E. Campbell and R. Derda*, “Portable self-contained cultures for phage and bacteria made of paper and tape”. Lab Chip, 2012, 12, 4269-4278. [Funded by NSERC Discovery and Alberta Ingenuity Nanotechnology Scholarship to Y.S]

pdf-icon Full Text

44. Simultaneous detection of Ca2+ and diacylglycerol signaling in living cells

P. Tewson, M. Westenberg, Y. Zhao, R.E. Campbell, A.M. Quinn, T.E. Hughes,* “Simultaneous detection of Ca2+ and diacylglycerol signaling in living cells”. PLoS ONE, 2012, 7(8): e42791. [Open Access PDF; Funded by CIHR NHG 99085 and Alberta Ingenuity Nanotechnology Scholarship to Y.Z.]

pdf-icon Full Text

43. New Bioanalytical Tools and Devices: Chemistry leads the way

R.E. Campbell*, “New Bioanalytical Tools and Devices: Chemistry leads the way”. Biotechnology Focus (Bioscienceworld), 2012, 16(4), 7-9. [Highlighting the research of Drs. Gibbs-Davis, Serpe, and Derda; Interactive PDF]

pdf-icon Full Text

42. Supramolecular hosts that recognize methyllysines and disrupt the interaction between a modified histone tail and its epigenetic reader protein

K.D. Daze,  T. Pinter,  C.S. Beshara,  A. Ibraheem,  S.A. Minaker,  M.C.F. Ma,  R.J.M. Courtemanche,  R.E. Campbell, and F. Hof*, “Supramolecular hosts that recognize methyllysines and disrupt the interaction between a modified histone tail and its epigenetic reader protein”. Chem. Sci., 2012, 3, 2695-2699. [Supplementary Material; Funded by Alberta Cancer Board and NSERC Discovery]

pdf-icon Full Text

41. A Fluorogenic Red Fluorescent Protein Heterodimer

S.C. AlfordA.S. AbdelfattahY. Ding, and R.E. Campbell*, “A Fluorogenic Red Fluorescent Protein Heterodimer”. Chem. Biol., 2012, 19, 353-360. [Cover Art; Highlighted in Nature MethodsSupplementary Material; Funded by CIHR NHG 94487 and 99085, NSERC Discovery, NSERC CGSD3 to S.C.A., and Vanier CGS to A.S.A.]

pdf-icon Full Text

40. FRET-based biosensors for multiparameter ratiometric imaging of Ca2+ dynamics and caspase-3 activity in single cells

Y. Ding, H-w. AiH. Hoi, R.E. Campbell*, “FRET-based biosensors for multiparameter ratiometric imaging of Ca2+ dynamics and caspase-3 activity in single cells”. Anal. Chem., 2011, 83, 9687–9693. [Supplementary Material; Funded by CIHR NHG 94487 and 99085 and NSERC Discovery]

pdf-icon Full Text

39. A bacteria colony-based screen for optimal linker combinations in genetically encoded biosensors

A. IbraheemH. YapY. Ding, R.E. Campbell*, “A bacteria colony-based screen for optimal linker combinations in genetically encoded biosensors”. BMC Biotechnol., 2011, 11, 105. [Open Access PDFSupplementary Material; Funded by Alberta Cancer Board]

pdf-icon Full Text

38. An Expanded Palette of Genetically Encoded Ca2+ Indicators

Y. Zhao, S. Araki, J. Wu, T. Teramoto, Y-F. Chang, M. Nakano, A.S. Abdelfattah, M. Fujiwara, T. Ishihara, T. Nagai, and R.E. Campbell*, “An Expanded Palette of Genetically Encoded Ca2+ Indicators”, Science, 2011, 333, 1888-1891. [Press release; Highlighted by C&EN ConcentratesBiophotonics, and Science SignalingSupplementary Material; Funded by CIHR NHG 94487 and 99085, NSERC Discovery, Alberta Ingenuity Nanotechnology Scholarship to Y.Z., and Vanier CGS to A.S.A.]

pdf-icon Full Text

37. A Monomeric Photoconvertible Fluorescent Protein for Imaging of Dynamic Protein Localization

H. Hoi, N.C. Shaner, M.W. Davidson, C.W. Cairo, J. Wang, R.E. Campbell*, “A Monomeric Photoconvertible Fluorescent Protein for Imaging of Dynamic Protein Localization”, J. Mol. Biol., 2010, 401, 776-791. [Supplementary Material; Funded by NSERC Discovery]

pdf-icon Full Text

36. Circularly permuted monomeric red fluorescent proteins with new termini in the β-sheet

H.J. CarlsonD. Cotton, and R.E. Campbell*, “Circularly permuted monomeric red fluorescent proteins with new termini in the β-sheet”, Protein Sci., 2010, 19, 1490-1499. [Funded by NSERC Discovery, NSERC USRA to D.C., NSERC PGSM to H.J.C., and Alberta Ingenuity Scholarship to H.J.C.]

pdf-icon Full Text

35. Fluorescent reporter proteins

R.E. Campbell and M.W. Davidson*, “Fluorescent reporter proteins”, Molecular Imaging with Reporter Genes. Eds. Sanjiv S. Gambhir and Shahriar S. Yaghoubi. Cambridge University Press, New York, NY, July 2010: 3 – 40. [Google book preview]

34. Designs and applications of fluorescent protein-based biosensors

A. Ibraheem and R.E. Campbell*, “Designs and applications of fluorescent protein-based biosensors”, Curr. Opin. Chem. Biol., 2010, 14, 30-36. [Funded by Alberta Cancer Board]

pdf-icon Full Text

33. Molecular Imaging: Editorial Overview

R.E. Campbell* and C.J. Chang*, “Molecular Imaging: Editorial Overview“, Curr. Opin. Chem. Biol., 2010, 14, 1-2. [Co-editor for this Special issue of the journal which had 15 invited reviews.]

pdf-icon Full Text

32. Engineered fluorescent proteins: innovations and applications

M.W. Davidson and R.E. Campbell*, “Engineered fluorescent proteins: innovations and applications”, Nat. Methods, 2009, 6, 713-717. [Invited Commentary for 5th Anniversary issue.] 

pdf-icon Full Text

31. Genetically encoded biosensors based on engineered fluorescent proteins

W.B. Frommer*, M.W. Davidson, R.E. Campbell* Genetically encoded biosensors based on engineered fluorescent proteins”, Chem. Soc. Rev., 2009, 38, 2833-2841. [Supplementary Material]

pdf-icon Full Text

30. Red fluorescent protein pH biosensor to detect concentrative nucleoside transport

D.E. Johnson, H-w. AiP. Wong, J.D. Young, R.E. Campbell*, and J.R. Casey* “Red fluorescent protein pH biosensor to detect concentrative nucleoside transport”, J. Biol. Chem., 2009, 284, 20499-20511. [Supplementary Material]

pdf-icon Full Text

29. Fluorescent Protein-Based Biosensors: Modulation of Energy Transfer as a Design Principle

R.E. Campbell*, “Fluorescent Protein-Based Biosensors: Modulation of Energy Transfer as a Design Principle”, Anal. Chem., 2009, 81(15), 5972–5979. [Cover ArtPodcast]

pdf-icon Full Text

28. An engineered tryptophan zipper-type peptide as a molecular recognition scaffold

Z. Cheng and R.E. Campbell*, “An engineered tryptophan zipper-type peptide as a molecular recognition scaffold”, J. Pept. Sci., 2009, 15, 523-532. [Supplementary Material]

pdf-icon Full Text

27. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging

H.J. Carlson, R.E. Campbell*, “Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging”, Curr. Opin. Biotechnol., 2009, 20, 19-27.

pdf-icon Full Text

26. Fluorescent proteins

R.E. Campbell*, “Fluorescent proteins”, Scholarpedia J., 2008, 3(7), 5410. [Open access; Article accessed more than 95,000 times as of July 2014]

 

25. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors

H-w. Ai, K.L. Hazelwood, M.W. Davidson, and R.E. Campbell*, “Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors”, Nat. Methods, 2008, 5, 401-403. [Supplementary Material; Highlighted in October 2008 issue of Biophotonics]

pdf-icon Full Text

24. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging

H-w. Ai, S.G. Olenych, P. Wong, M.W. Davidson, and R.E. Campbell*, “Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging”, BMC Biol., 2008, 6, 13. [Open Access PDF; Designated as a Highly Accessed article]

pdf-icon Full Text

23. Teal fluorescent proteins: Characterization of a reversibly photoconvertible variant

H-w. Ai, and R. E. Campbell*, “Teal fluorescent proteins: Characterization of a reversibly photoconvertible variant”, Proc. SPIE, 2008, 6868, 68680D.

pdf-icon Full Text

22. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores

Q.K. Timerghazin, H.J. Carlson, C. Liang, R.E. Campbell,* and A. Brown*, “Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores”, J. Phys. Chem B, 2008, 112, 2533-2541. [Supplementary Material]

pdf-icon Full Text

21. Identification of sites within a monomeric red fluorescent protein that tolerate peptide insertion and testing of corresponding circular permutations

Y. LiA.M. SierraH.-w. Ai, and R.E. Campbell*, “Identification of sites within a monomeric red fluorescent protein that tolerate peptide insertion and testing of corresponding circular permutations”, Photochem. Photobiol., 2008, 84, 111–119. [Supplementary Material]

pdf-icon Full Text

20. More than just pretty colors: the growing impact of fluorescent proteins in the life sciences

H-w. Ai and R.E. Campbell*, “More than just pretty colors: the growing impact of fluorescent proteins in the life sciences”, Biotechnology Focus (Bioscienceworld), 2007, issue 11, 16-18. [PDF]

 

19. In vivo screening identifies a highly folded beta-hairpin peptide with a structured extension

Z. Cheng, M. Miskolzie, and R.E. Campbell*, “In vivo screening identifies a highly folded beta-hairpin peptide with a structured extension”, ChemBioChem, 2007, 8, 880-883. [Cover ArtSupplementary Material]

pdf-icon Full Text

18. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins

H.-w. Ai, N.C. Shaner, Z. Cheng, R.Y. Tsien, and R.E. Campbell*, “Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins”, Biochemistry, 2007,46, 5904 – 5910. [Featured on the cover of the June 2007 issue of Biophotonics]

pdf-icon Full Text

17. Structural basis for reversible photobleaching of a green fluorescent protein homologue

J.N. Henderson, H.-w. Ai, R.E. Campbell, and S.J. Remington*, “Structural basis for reversible photobleaching of a green fluorescent protein homologue”, Proc. Natl. Acad. Sci. U.S.A., 2007, 14, 6672-6677. [Supplementary Material; Featured in June 2007 issue of Biophotonics and April 2007 Science Daily online]

pdf-icon Full Text

16. Fluorescence-based characterization of genetically encoded peptides that fold in live cells: progress towards a generic hairpin scaffold

Z. Cheng and R.E. Campbell*, “Fluorescence-based characterization of genetically encoded peptides that fold in live cells: progress towards a generic hairpin scaffold”, Proc. SPIE, 2007, 6449, 64490S. 

15. Directed evolution of a monomeric, bright, and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging

H-w. Ai, J.N. Henderson, S.J. Remington, and R.E. Campbell*, “Directed evolution of a monomeric, bright, and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging”, Biochem. J., 2006, 400, 531-540. 

pdf-icon Full Text

14. Assessing the Structural Stability of Designed β-Hairpin Peptides in the Cytoplasm of Live Cells 

Z. Cheng and R.E. Campbell*, “Assessing the Structural Stability of Designed β-Hairpin Peptides in the Cytoplasm of Live Cells”, ChemBioChem, 2006, 7, 1147-1150. 

pdf-icon Full Text

13. Realization of β-lactamase as a versatile fluorogenic reporter

R.E. Campbell*, “Realization of β-lactamase as a versatile fluorogenic reporter”, Trends Biotech., 2004, 22, 208-211. 

pdf-icon Full Text

Postdoctoral research at the University of California, San Diego:

12. Autofluorescent Proteins with Excitation in the Optical Window for Intravital Imaging in Mammals

M.Z. Lin, M.R. McKeown, H.-L. Ng, T.A. Aguilera, N.C. Shaner, R.E. Campbell, S.R. Adams, L.A. Gross, W. Ma, T. Alber, R.Y. Tsien*, “Autofluorescent Proteins with Excitation in the Optical Window for Intravital Imaging in Mammals”, Chem. Biol., 2009, 16, 1169-1179.

pdf-icon Full Text

11. Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma red fluorescent protein

N.C. Shaner, R.E. Campbell, P.A. Steinbach, B.N.G. Giepmans, A.E. Palmer, and R.Y. Tsien*, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma red fluorescent protein”, Nat. Biotechnol., 2004, 22, 1567-1572.

pdf-icon Full Text

10. Creating New Fluorescent Probes for Cell Biology

J. Zhang, R.E. Campbell, A.Y. Ting and R.Y. Tsien*, “Creating New Fluorescent Probes for Cell Biology”, Nat. Rev. Mol. Cell Biol., 2002, 3, 906-918.

pdf-icon Full Text

9. A Monomeric Red Fluorescent Protein

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R.Y. Tsien*, “A Monomeric Red Fluorescent Protein”, Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 7877-7882.

pdf-icon Full Text

8. New Biarsenical Ligands and Tetracysteine Motifs for Protein Labeling in Vitro and in Vivo: Synthesis and Biological Applications

S.R. Adams, R.E. Campbell, L.A. Gross, B.R. Martin, G.K. Walkup, Y. Yao, J. Llopis and R.Y. Tsien*, “New Biarsenical Ligands and Tetracysteine Motifs for Protein Labeling in Vitro and in Vivo: Synthesis and Biological Applications”, J. Am. Chem. Soc., 2002, 124, 6063-6076. 

pdf-icon Full Text

7. Reducing the Environmental Sensitivity of Yellow Fluorescent Protein: Mechanism and Applications

O. Griesbeck, G.S. Baird, R.E. Campbell, D.A. Zacharias and R.Y. Tsien*, “Reducing the Environmental Sensitivity of Yellow Fluorescent Protein: Mechanism and Applications”, J. Biol. Chem., 2001, 276, 29188-29194. 

pdf-icon Full Text

Graduate research at the University of British Columbia:

6. The Structure of UDP-N-Acetylglucosamine 2-Epimerase Reveals Homology to Phosphoglycosyl Transferases

R.E. Campbell, S.C. Mosimann, M.E. Tanner*, and N.C.J. Strynadka*, “The Structure of UDP-N-Acetylglucosamine 2-Epimerase Reveals Homology to Phosphoglycosyl Transferases”,Biochemistry, 2000, 39, 14993-15001.

pdf-icon Full Text

5. The First Structure of UDP-Glucose Dehydrogenase Reveals the Catalytic Residues Necessary for the Two-fold Oxidation

R.E. Campbell, S.C. Mosimann, I. van de Rijn, M. E. Tanner, and N.C.J. Strynadka*, “The First Structure of UDP-Glucose Dehydrogenase Reveals the Catalytic Residues Necessary for the Two-fold Oxidation”, Biochemistry, 2000, 39, 7012-7023.

pdf-icon Full Text

4. UDP-Glucose Analogues as Inhibitors and Mechanistic Probes of UDP-Glucose Dehydrogenase

R.E. Campbell and M.E. Tanner*, “UDP-Glucose Analogues as Inhibitors and Mechanistic Probes of UDP-Glucose Dehydrogenase”, J. Org. Chem., 1999, 64, 9487-9492.

pdf-icon Full Text

3. Covalent Adduct Formation with a Mutated Enzyme: Evidence for a Thioester Intermediate in the Reaction Catalyzed by UDP-Glucose Dehydrogenase

X. Ge, R.E. Campbell, I. van de Rijn, and M.E. Tanner*, “Covalent Adduct Formation with a Mutated Enzyme: Evidence for a Thioester Intermediate in the Reaction Catalyzed by UDP-Glucose Dehydrogenase”, J. Am. Chem. Soc., 1998, 120, 6613-6614.

pdf-icon Full Text

2. Uridine diphospho-alpha-D-gluco-hexodialdose: Synthesis and kinetic competence in the reaction catalyzed by UDP-glucose dehydrogenase

R.E. Campbell and M.E. Tanner*, “Uridine diphospho-alpha-D-gluco-hexodialdose: Synthesis and kinetic competence in the reaction catalyzed by UDP-glucose dehydrogenase”, Angew. Chem. Int. Ed. Eng. 1997, 36, 1520-1522.

pdf-icon Full Text

1. Properties and kinetic analysis of UDP-glucose dehydrogenase from group A streptococci. Irreversible inhibition by UDP-chloroacetol

R.E. Campbell, R.F. Sala, I. van de Rijn and M.E. Tanner*, “Properties and kinetic analysis of UDP-glucose dehydrogenase from group A streptococci. Irreversible inhibition by UDP-chloroacetol”, J. Biol. Chem., 1997, 272, 3416-22.

pdf-icon Full Text